4th Annual National Conference September 21–23, 2023 RHEUMATOLOGY ADVANCED PRACTICE PROVIDERS

RhAP

The APP's guide to diagnosing and managing Takayasu's arteritis Stacey Johnson, MSN, FNP-C **Montana Arthritis Center** Great Falls, MT Naomi Amudala, MSN, FNP-C University of Pennsylvania Philadelphia, PA

1. Define and differentiate the epidemiology and pathophysiology of Takayasu and how it varies from GCA.

2. Recognize the disease manifestations in active Takayasu arteritis.

3. Compare the different imaging modalities used to diagnose and evaluate Takayasu's arteritis

4. Recall immunosuppressive therapies that are used to manage Takayasu's

Case Presentation

- HPI:
- 18 year old female presents with right arm pain
- High school band director

Develops pain and cramping
 in her right arm whenever she tries to conduct

- Orthopedics: rotator cuff tendinopathy

Case Presentation – Physical exam

Well appearing.

- Unable to obtain blood pressure in right arm.
- □ Heart and lung examinations unremarkable.
- MSK: Full ROM in all joints including right shoulder. No limitations

□ Vascular exam:

- □ No scalp tenderness. No carotidynia. No carotid bruits.
- Right subclavian bruit.
- Right radial pulse absent. Left radial pulse present.
- Bilateral femoral and pedal pulses present equally.
- No abdominal bruit.

Case Presentation - Imaging

"Redemonstration of near complete occlusion of the right subclavian artery with reconstitution at the level of the right axillary artery as well as 50% stenosis of the proximal right vertebral artery"

Right arm pain/cramping

Absent right radial pulse + right sub-clavian bruit

Large Vessel Vasculitis - Overview

Merkel, P.A. (2022). Overview of and approach to the vasculitides in adults. In K.J. Warrington & P. Seo (Eds.), UptoDate. Available from https://www.uptodate.com/contents/overview-of-and-approach-to-the-vasculitides-in-adults

Large Vessel Vasculitis - Overview

Pugh D, Karabayas M, Basu N, Cid MC, Goel R, Goodyear CS, Grayson PC, McAdoo SP, Mason JC, Owen C, Weyand CM, Youngstein T, Dhaun N. Large-vessel vasculitis. Nat Rev Dis Primers. 2022 Jan 6;7(1):93. doi: 10.1038/s41572-021-00327-5. PMID: 34992251 - PMCID: PMC9115766

Large Vessel Vasculitis - Overview

Rapid diagnosis and treatment improve patient outcome

Diagnosis is based on a combination of medical history, physical exam, laboratory tests and imaging modalities.

Treatment options include:

glucocorticoids, conventional DMARDS biologic drugs.

Pugh D, Karabayas M, Basu N, Cid MC, Goel R, Goodyear CS, Grayson PC, McAdoo SP, Mason JC, Owen C, Weyand CM, Youngstein T, Dhaun N. Large-vessel vasculitis. Nat Rev Dis Primers. 2022 Jan 6;7(1):93. doi: 10.1038/s41572-021-00327-5. PMID: 34992251; PMCID: PMC9115766.

Arterial involvement in large vessel vasculitis

Pugh D, Karabayas M, Basu N, Cid MC, Goel R, Goodyear CS, Grayson PC, McAdoo SP, Mason JC, Owen C, Weyand CM, Youngstein T, Dhaun N. Large-vessel vasculitis. Nat Rev Dis Primers. 2022 Jan 6;7(1):93. doi: 10.1038/s41572-021-00327-5. PMID: 3499251 - PMCID: PMC9115766

Epidemiology

GCA	TAK
Age 50 and older	Age less than 40 at disease onset
Incidence increases with age	Can occur later in life (primarily in Asian descent)
F>M	Primarily occurs in females (12:1 F>M)
Greater prevalence in people of northern European descent (15-25 per 100,000)	Incidence rate highest in Asia (1 per million per year)
6 per 100,000 in southern European descent	Can occur in all races
Rare in blacks and Hispanics (1-2 per 100,000)	

Onen F, Akkoc N. Epidemiology of Takayasu arteritis. Presse Med. 2017 Jul-Aug;46(7-8 Pt 2):e197-e203. doi: 10.1016/j.lpm.2017.05.034. Epub 2017 Jul 26. PMID: 28756072.

Giant cell formation

- After initial insult (autoantigen, injury, trauma, injection, drug etc.) dendritic cells in the adventitia are activated.
- Dendritic cells release:
 - chemokines
 - which attract CD4+ helper T-cells and macrophages into the arterial wall
 - IL-6 and IL-8
 - These activate T-cells and promote IFN-gamma release from the T-cells
 - IFN-gamma promotes inflammation, macrophage activation and granuloma formation.
- The activated macrophages release substances causing endothelial damage, the also bond together forming syncytia (a single cell containing multiple nuclei) aka "giant cell" formation

B) 3 granulomas at the medio-adventitial junctionC) Multinucleated giant cells in granuloma

Sotoudeh Anvari, M., Masoudkabir, F., Abbasi, K., Boroumand, M. A., Zarghampour, M., & Goodarzynejad, H. (2016). Takayasu's Arteritis Presenting with Headache and Peripheral Facial Palsy: A Case Report. *The journal of Tehran Heart Center*, *11*(4), 195–197.

Pathologic examination of the patient's aortic valve in hematoxylin and eosisn (H&E) stain.

TAK pathophysiology

- Unknown etiology
- Granulomatous polyarteritis
- Thickened adventitia with perivascular infiltrates
- "Giant cells" are found in the media of the large elastic arteries.
- The damage to the cell wall leads to dilation of the vessel wall, aneurysm formation and can lead to thrombus

Clinical Manifestations

	GCA	ТАК	
Constitutional	Fever, fatigue, weight loss,	Weight loss, low grade fever, fatigue	
Head	Headache (2/3 of patients), transient visual loss (curtain effect, unilateral), permanent vision loss (sudden, painless, partial or complete, unilateral or bilateral) Stroke is uncommon, maxillary and dental pain, facial swelling, throat pain, tongue pain and macroglossia	Lightheadedness, vertigo, syncope, orthostasis, headaches, convulsions and stroke. *Visual impairment is a late manifestation of severe disease due to arterial insufficiency	
CV	Aortic aneurysms (10-20% of cases), arterial bruits, diminished or absent blood pressures, arm claudication.	Carotidynia (10-30% of patients), absent or diminished peripheral pulses, limb claudication, arterial bruit, HTN, discrepant BP between arms, angina	
Pulmonary	Non-productive cough	Chest pain, dyspnea, hemoptysis, pulmonary hypertension	
GI		Abdominal pain, post-prandial pain, diarrhea, and GI hemorrhage	
Integumentary		Erythema nodosum or pyoderma gangrenosum - uncommon	
MSK	Jaw claudication, PMR symptoms, occasionally peripheral synovitis	Arthralgia in 50%, uncommon to be synovitis. Symptoms can be transient or continuous	
		Wood, P.R. (2020). Large-vessel vasculitis: giant cell arteritis, Takayasu arteritis, and aortitis. In S.G. West &	

TAK - Common Clinical Manifestations

Bruit

9/23/2023

© Mayo Foundation for Medical Education and Research. All rights reserved.

Large Vessel Vasculitis: Diagnosis and Management

Large Vessel Vasculitis: Diagnosis

 No validated diagnostic criteria

- Diagnosis can be challenging and is based on symptoms, physical exam findings, and imaging
- Imaging is <u>key</u> in making the diagnosis!

Large Vessel Vasculitis – Imaging Modalities

Per 2021 ACR guidelines, MRA, CTA, PET are recommended over catheter-based angiography.

CT

• No radiation

- Good for serial imaging
- Check renal function before giving contrast

- Not as sensitive in detecting active disease compared to MRA
- Inferior to MRA in detecting wall edema and inflammation

- Helpful in determining if disease is active
- More sensitive to treatment → need to do within a few days of starting prednisone
- Interpretation of results can be challenging

CT angiogram with/without contrast

Jin Wook Chung, Hyo-Cheol Kim, Young Ho Choi, Sang Joon Kim, Whal Lee, Jae Hyun Park, Patterns of aortic involvement in Takayasu arteritis and its clinical implications: Evaluation with spiral computed tomography angiography, Journal of Vascular Surgery, Volume 45, Issue 5, 2007, Pages 906-914.

MR angiography in patient with active Takayasu's

Andrews J, Al-Nahhas A, Pennell DJ, *et al* Non-invasive imaging in the diagnosis and management of Takayasu's arteritis *Annals of the Rheumatic Diseases* 2004;**63**:995-1000.

FDG-PET scan of patient 5 with active TA at diagnosis

©Andrews J, Al-Nahhas A, Pennell DJ, et al Non-invasive imaging in the diagnosis and management of Takayasu's ar Annals of the Rheumatic Diseases 2004;63:995-1000.

"Positron Emission Tomography as an Imaging Biomarker in a Prospective, Longitudinal Cohort of Patients with Large Vessel Vasculitis"

Grayson PC, Alehashemi S, Bagheri AA, Civelek AC, Cupps TR, Kaplan MJ, Malayeri AA, Merkel PA, Novakovich E, Bluemke DA, Ahlman MA. ^{物理}时的的exyglucose-Positron Emission Tomography As an Imaging Biomarker in a Prospective, Longitudinal Cohort of Patients With Large Vessel Vasculitis. Arthritis Rheumatol. 2018 Mar;70(3):439-449. doi: 10.1002/art.40379. Epub 2018 Feb 6. PMID: 29145713; PMCID: PMC5882488.

170 FDG-PET scans:

56 patients - LVV

59 patients - disease mimickers, hyperlipidemia, health controls

PET-CT had 85% sensitivity and 83% specificity for detecting active vasculitis.

Clinical Remission:

TAK: 48% of PET scan interpreted as active disease

GCA: 62% of PET scans interpreted as active disease

Global burden of arterial uptake much higher in GCA patients compared to TAK patients

Patterns of arterial disease in TAK and GCA

Laboratory Work-up

Baseline work-up

CBC

Comprehensive metabolic panel				
ESR				
CRP	•			
RPR				
Quantiferon				
Lipid panel				

presenting symptoms)				
ANA				
ANCA				
ESR				
CRP				
RF				
CCP antibody				
Crvoalobulins				
IgG4 levels				
SPEP				
Hepatitis serologies (rule out PAN)				

Additional work-up (dependent on

Patient with suspected Takayasu arteritis: Now what?

Step 1. Does the patient have TAK?

Step 2. If yes – Is the disease active?

Step 1. Does the patient have Takayasu's?

What is the story?

- Fevers, night sweats
- Neck tenderness
- Feeling dizzy or lightheaded
- Cramping in the arms or legs with repetitive motions
- Post-prandial pain
- New headaches
- Visual changes

Step 1. Does the patient have Takayasu's?

□ What does the imaging show?

Could radiographic images represent something else?

Differential diagnoses:

- Fibromuscular dysplasia
- Polyarteritis nodosa
- Atherosclerotic disease
- Syphilis
- Tuberculosis
- IgG4-related disease

Step 1. Does the patient have Takayasu's?

□What are your physical exam findings?

- Carotidynia, scalp tenderness
- Bruits: Carotid, sub-clavian, abdominal, femoral
- Absent pulses?
- Joint tenderness
- Skin findings: erythema nodosum, cool extremities, discoloration

Step 2. Is the disease active?

Does the patient have radiographic changes?

Helpful to review prior imaging

Does the patient have *new* or *worsening* symptoms that could indicate active disease?

- New constitutional symptoms
- New claudication in arms or legs
- More dizziness/lightheadedness
- Elevated ESR/CRP

2021 American College of Rheumatology/Vasculitis Foundation Guideline for the Management of Giant Cell Arteritis and Takayasu Arteritis

Overview of treatment of Takayasu arteritis (TAK) based on clinical and radiographic assessments

AZA = azathioprine; CT = computed tomography; FDG-PET = ¹⁸F-fluorodeoxyglucose positron emission tomography; GC = glucocorticoids; MR = magnetic resonance; MTX = methotrexate; TCZ = tocilizumab; TNFi = tumor necrosis factor inhibitor * Can be suggested by vascular edema, contrast enhancement, and/or increased wall thickness on MR or CT angiography, or supra-physiologic FDG

uptake in the arterial wall on PET imaging

Takayasu's: Medication management

□Glucocorticoids: If new/severe disease, recommend 1 mg/kg daily. Max dose 60-80mg x 2-4 weeks, then taper.

□Steroid sparing agents:

First line treatments:

- Methotrexate
- Azathioprine
- TNF inhibitors

Takayasu's: Medication management

Second Line therapy

Table 1New targeted therapies in Takayasu Arteritis.

Drug	Pathogenetic basis	Evidence in TAK	Recommendations and clinical use
TNF-α inhibitors (infliximab, etanercept, adalimumab, golimumab, certolizumab pegol)	Inhibitors of TNF- α (bDMARDs): • TNF- α has a major role in the development of TAK granulomatous inflammation • In active TAK higher serven levels of TNF- α and higher mRNA expression and intracellular production by T cells	Cohort studies and open-label prospective study, showing positive results in TAK patients (clinical improvement, GC sparing effect, higher sustained remission rate compared to cDMARDs) (<u>19–24</u>) No RCTs Meta-analysis with 19 observational studies, showing more than 80% of treated patients attaining at least partial clinical response (<u>25</u>) Good safety profile in cohort studies	 2018 EULAR recommendations: TNF-α inhibitors as second line treatment in TAK patients resistant to csDMARD 2021 ACR guidelines: TNF-α inhibitors as first line treatment, like methotrexate and azathioprine
Tocilizumab	Anti-IL-6r (bDMARD) • IL-6 is a pro-inflammatory cytokine • Iljoher IL-6 levels in TAK patients compared to HC and in TAK patients with active disease compared to patients with low disease activity SELECT-TAK	 Cohort studies, showing positive results in TAK patients (clinical improvement, GC sparing effect, higher sustained remission rate compared to cDMARDs) (22, 26–30) Meta-analysis with 22 observational studies, showing more than 8% of treated patients attaining at least partial clinical response (25) One RCT (TAKT study): relapse-free survival tended to be improved in treated tients, but no statistical significance. Longer-term open-label extension showed GC aring effect, lower radiological disease progression, better PROs (31, 32) bood safety profile in cohort studies and RCT 	2018 EULAR recommendations: tocilizumab as second line treatment in TAK patients resistant to csDMARD 2021 ACR guidelines: tocilizumab as second line treatment in patients with inadequate response to other immunosuppressive therapies
JAK-Inhibitors (tofacitinib, upadaci nil)	A Phase 3, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and	facitinib: 2ase reports and one prospective observational study, showing positive results in VK patients (clinical improvement, lower radiological disease progression, superior to athortexate) (33–37) bood safety profile One ongoing RCT (<u>NCT04161898</u>) o data on other JAK-Inhibitors	Only case reports Not included in 2018 EULAR recommendations or 2021 ACR guidelines
Rituximab	Anti-CD20 (b) - In TAK patie of activated - Rituximable - Ritu	solated case reports on rituximab in TAK with contradictory results (38-42) b RCTs, no meta-analysis, no ongoing trial	Very limited evidence with contradictory results Only case reports Not included in 2018 EULAR recommendations or 2021 ACR guidelines
Abatacept	Soluble fusio - In TAK patie of activated B- - Abatacept bil	Dne RCT with 34 TAK patients: abatacept not associated with a longer median ration of remission compared to placebo (43)	• 2021 ACR guidelines: Abatacept is not recommended in TAK
Ustekinumab	Anti-p40. IL-12 and IL-23 inhibitor (bDMARD) • Th17 and Th1 pathways contribute to TAK pathogenesis • Ustekinumab target p40, a common subunit of IL-12 and IL-23 (main cytokines involved in Th17 and Th1 pathways)	A small prospective observational study (improvement in clinical symptoms but no changes in intramural enhancement on MRA) (<u>44</u>) One ongoing RCT (<u>NCT04882072</u>)	Very limited evidence Not included in 2018 EULAR recommendations or 2021 ACR guidelines

Regola F, Uzzo M, Toniati P, Trezzi B, Sinico RA, Franceschini F. Novel Therapies in Takayasu Arteritis. Front Med (Lausanne). 2022 Jan 12;8:814075. doi: 10.3389/fmed.2021.814075. PMID: 35096902; PMCID: PMC8790042.

How do I know if my patient is flaring?

It can be extremely difficult to determine if patient is flaring

Any new symptoms warrant further evaluation – often via imaging

Within the correct clinical context, a change in imaging raises concern for active disease:

Should always compare imaging to prior imaging to properly evaluate for evidence of new disease

New symptoms?

dizziness/lightheadedness claudication chest pain constitutional symptoms Elevated acute inflammatory markers?

New arterial lesions Enhanced wall thickening New stenosis **Q**Routine medical visits to monitor for new/worsening symptoms.

 Serial imaging: No guidelines. We typically repeat imaging every 3-6 months or if there are new symptoms. Can move to less frequent imaging if imaging has been stable

Acute inflammatory markers: ACR guidelines recommend against treating elevated ESR/CRP in the absence of symptoms and/or imaging changes. Helpful to trend, especially if they rise in the setting of possible disease flare.

Surgical Intervention

ACR guidelines: Recommends against surgical intervention for patients with limb claudication, unless quality of life is severely impacted

Recommend surgery only in patients without active disease

When doing a graft, surgeon will need to ensure that there are no active lesions in the artery where the graft will attach

Summary

"Takayasu's is the most humbling disease that we treat" - Dr. Peter Merkel

□Refer to a vasculitis specialty center whenever possible

Be prepared to deal with uncertainties

 Do these symptoms represent disease or damage?

Get ready to go to bat for your patients

- Difficult to obtain insurance approval for imaging
- Currently no FDA approved medications for Takayasu arteritis

Resources for Your Patients With Vasculitis

References

Ameer MA, Peterfy RJ, Khazaeni B. Temporal Arteritis. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459376/

Andrews J, Al-Nahhas A, Pennell DJ, et al Non-invasive imaging in the diagnosis and management of Takayasu's arteritis. Annals of the Rheumatic Diseases 2004;63:995-1000.

Checks and Balances in Autoimmune Vasculitis - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Schematic-model-of-the-pathogenesis-of-giant-cell-arteritis-facilitated-by-the-state_fig1_323341635 [accessed 19 Jun, 2023]

Grayson PC, Alehashemi S, Bagheri AA, Civelek AC, Cupps TR, Kaplan MJ, Malayeri AA, Merkel PA, Novakovich E, Bluemke DA and Ahlman MA. (18) F-Fluorodeoxyglucose-Positron Emission Tomography As an Imaging Biomarker in a Prospective, Longitudinal Cohort of Patients With Large Vessel Vasculitis. Arthritis & rheumatology (Hoboken, NJ). 2018;70:439–449.

Gribbons KB, Ponte C, Carette S, Craven A, Cuthbertson D, Hoffman GS, Khalidi NA, Koening CL, Langford CA, Maksimowicz-McKinnon K, McAlear CA, Monach PA, Moreland LW, Pagnoux C, Quinn KA, Robson JC, Seo P, Sreih AG, Suppiah R, Warrington KJ, Ytterberg SR, Luqmani R, Watts R, Merkel PA, Grayson PC. Patterns of Arterial Disease in Takayasu Arteritis and Giant Cell Arteritis. Arthritis Care Res (Hoboken). 2020 Nov;72(11):1615-1624. doi: 10.1002/acr.24055. PMID: 31444857; PMCID: PMC7035996.

Jin Wook Chung, Hyo-Cheol Kim, Young Ho Choi, Sang Joon Kim, Whal Lee, Jae Hyung Park, Patterns of aortic involvement in Takayasu arteritis and its clinical implications: Evaluation with spiral computed tomography angiography, Journal of Vascular Surgery, Volume 45, Issue 5, 2007, Pages 906-914,

Maz, M., Chung, S.A., Abril, A., Langford, C.A., Gorelik, M., Guyatt, G., Archer, A., Conn, D.L., Full, K.A., Grayson, P.C., Ibarra, M.F., Imundo, L.F., Kim, S., Merkel, P.A., Rhee, R.L., Seo, P., Stone, J.H., Sule, S., Sundel, R.P., Vitobaldi, O.I., Warner, A., Byram, K., Dua, A.B., Husainat, N., James, K.E., Kalot, M.A., Lin, Y.C., Springer, J.M., Turgunbaev, M., Villa-Forte, A., Turner, A.S. and Mustafa, R.A. (2021), 2021 American College of Rheumatology/Vasculitis Foundation Guideline for the Management of Giant Cell Arteritis and Takayasu Arteritis. Arthritis Rheumatol, 73: 1349-1365. https://doi.org/10.1002/art.41774

Merkel, P.A. (2022). Overview of and approach to the vasculitides in adults. In K.J. Warrington & P. Seo (Eds.), UptoDate. Available from https://www.uptodate.com/contents/overview-of-and-approach-to-the-vasculitides-in-adults

References cont'd

Merkel, P.A. (2023) Clinical features and diagnosis of Takayasu arteritis. In K.J. Warrington & P. Seo (Eds.), UptoDate. Available from https://www.uptodate.com/contents/clinical-features-and-diagnosis-of-takayasu-arteritis

Merriam-Webster. (n.d.). Syncytia. In Merriam-Webster.com dictionary. Retrieved June 20, 2023, from https://www.merriam-webster.com/dictionary/syncytia

Pugh D, Karabayas M, Basu N, Cid MC, Goel R, Goodyear CS, Grayson PC, McAdoo SP, Mason JC, Owen C, Weyand CM, Youngstein T, Dhaun N. Large-vessel vasculitis. Nat Rev Dis Primers. 2022 Jan 6;7(1):93. doi: 10.1038/s41572-021-00327-5. PMID: 34992251; PMCID: PMC9115766.

Regola F, Uzzo M, Toniati P, Trezzi B, Sinico RA, Franceschini F. Novel Therapies in Takayasu Arteritis. Front Med (Lausanne). 2022 Jan 12;8:814075. doi: 10.3389/fmed.2021.814075. PMID: 35096902; PMCID: PMC8790042.

Salvarani, C., & Muratore, F. (2023) Clinical manifestations of giant cell arteritis. In K.J. Warrington, J.T. Trobe, & P. Seo (Eds.), UptoDate. Available from https://www.uptodate.com/contents/clinical-manifestations-of-giant-cell-arteritis

Sotoudeh Anvari, M., Masoudkabir, F., Abbasi, K., Boroumand, M. A., Zarghampour, M., & Goodarzynejad, H. (2016). Takayasu's Arteritis Presenting with Headache and Peripheral Facial Palsy: A Case Report. The journal of Tehran Heart Center, 11(4), 195–197.

Onen F, Akkoc N. Epidemiology of Takayasu arteritis. Presse Med. 2017 Jul-Aug;46(7-8 Pt 2):e197-e203. doi: 10.1016/j.lpm.2017.05.034. Epub 2017 Jul 26. PMID: 28756072.

Weyand, C.M. & Goronzy, J.J. (2008) Vasculitides, giant cell arteritis, polymyalgia rheumatica, and Takayasu's arteritis. In J.H. Kippel (Ed), Primer on the rheumatic diseases (13th ed., pp 399-407). Springer.

Wood, P.R. (2020). Large-vessel vasculitis: giant cell arteritis, Takayasu arteritis, and aortitis. In S.G. West & J. Kolfenbach (Eds.) Rheumatology Secrets (4th ed., pp. 227-233). Elsevier.

Zhu FP, Luo S, Wang ZJ, Jin ZY, Zhang LJ, Lu GM. Takayasu arteritis: imaging spectrum at multidetector CT angiography. Br J Radiol. 2012 Dec;85(1020):e1282-92. doi: 10.1259/bjr/25536451. PMID: 23175494; PMCID: PMC3611735.

Which of these men founded Takayasu's arteritis:

